datos curiosos se renovara

Si buscas hosting web, dominios web, correos empresariales o crear páginas web gratis, ingresa a PaginaMX
Por otro lado, si buscas crear códigos qr online ingresa al Creador de Códigos QR más potente que existe



La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática
Además, la propia teoría de conjuntos es objeto de estudio 
per se, no sólo como herramienta auxiliar, en particular las propiedades y relaciones de los conjuntos 
infinitos. En esta disciplina es habitual que se presenten casos de propiedades indemostrables ocontradictorias, como la hipótesis del continuo o la existencia de uncardinal inaccesible. Por esta razón, sus razonamientos y técnicas se apoyan en gran medida en la lógica matemática
El desarrollo histórico de la teoría de conjuntos se atribuye a Georg Cantor, que comenzó a investigar cuestiones conjuntistas «puras» del infinito en la segunda mitad del siglo XIX, precedido por algunas ideas de Bernhard Bolzano e influenciado por Richard Dedekind. El descubrimiento de las paradojas de la teoría cantoriana, de conjuntos, formalizada por Gottlob Frege, propició los trabajos de Bertrand RussellErnst ZermeloAbraham Fraenkel y otros a principios del siglo XX
 

La teoría de conjuntos más elemental es una de las herramientas básicas del lenguaje matemático. Dados unoselementos, unos objetos matemáticos como números o polígonos por ejemplo, puede imaginarse una colección determinada de estos objetos, un conjunto. Cada uno de estos elementos pertenecen al conjunto, y esta noción depertenencia es la relación relativa a conjuntos más básica. Los propios conjuntos pueden imaginarse a su vez como elementos de otros conjuntos. La pertenencia de un elemento a a un conjunto A se indica como a  A.

Una relación entre conjuntos derivada de la relación de pertenencia es la relación de inclusión. Una subcolección de elementos B de un conjunto dado A es un subconjunto de A, y se indica como B  A.

Ejemplos.





PARADOJA DE CANTOR: EL CONJUNTO DE TODOS LOS CONJUNTOS

Sea C el conjunto de todos los conjuntos. Entonces todo subconjunto de C es así mismo un elemento de C; luego, el conjunto potencia de C es un subconjunto de C; pero esto implica que la cardinalidad del conjunto potencia es menor o igual a la cardinalidad de C. Pero entonces, según el teorema de Cantor, la cardinalidad de C debe ser menor a la cardinalidad del conjunto potencia. Así pues, el concepto de conjunto de todos los conjuntos lleva a una contradicción
© 2025 datos curiosos se renovara

06126